

General Updates: Annex 9 Climate Change Impacts Great Lakes Water Quality Agreement

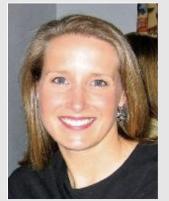
Tuesday, November 14, 2023

Presented by Alisa Young Annex 9 Co-Chairs ALISA YOUNG (NOAA) and SEAN BACKUS (ECCC)

GLP on Aquatic Nuisance Species Session: Invasive Species and Climate Change Risk

Annex 9 Leadership Transition

Outgoing Chairs


Shaffina Kassam (ECCC)

Years Active (2 2023)

Jennifer Day U.S. Co-Chair (NOAA)

Years Active (2018-2023)

Thank you for your service!

Incoming Chairs Sean Backus (ECCC)

Alisa Young (NOAA)

Annex 9 Key Commitments

Canada and the United States agree to:

- Develop/improve regional-scale climate models and link them to GL chemical, physical and biological models to better understand and predict the impacts of climate change on GL water quality/ecosystem
- Enhance monitoring of relevant climate and GL variables to validate model predictions and understand current climate changes and its impacts;
- Develop and improve analytical tools to understand and predict the impacts, risks and vulnerabilities associated with climate change; and
- Coordinate binational climate change science activities to quantify, understand and publicly share information to proactively address climate change impacts.

Annex 9 Co-Chair Goal: Add Support Across Annex Themes

Climate Change Cuts Across Most Annex Themes				
Annex	Climate Change References in other Annexes			
Lakewide Management (2)	Through the nearshore framework, climate change, among other factors, will be considered as a source of stress to the nearshore			
Chemicals of Mutual Concern (3)	Recognition that climate change might affect the use, release, transport, and fate of chemicals of mutual concern.			
Nutriants (1)	Climate change, among other factors, will be taken in account when establishing phosphorus concentrations and loading targets			
Nutrients (4)	The influence of climate change on nutrient inputs to the great lakes and the formation of algae will be studied.			
Aquatic Invasive Species (6)	The potential impact of climate change on the introduction survival, establishment and spread of AIS will be assessed.			
Habitat and Species (7)	Science to support implementation of prevention methods to improve the resilience of native species and habitat will consider climate change impacts among other stressors			
Groundwater (8)	Climate changes's affect of groundwater's impact on the quality of Waters in the Great Lakes will be analyzed.			

^e Chang

Updates: 2023 - 2025 Priorities for Science

1. Collaborate with Annex 2 to enhance Lakewide Action and Management Plans (LAMP) by including current climate trends and best available information of projected future change and impacts.

Deliverables:

1. Provide climate-related expertise to the LAMP writing teams in development of each new LAMP

Status:

LE LAMP is currently in the stage of a red flag review w/comments due by November 24.

Upcoming: 2024 Lake Michigan LAMP

Lake Erie 2019-2023 Lakewide Action & Management Plan

Updates: 2023 - 2025 Priorities for Action

1. Enhance knowledge exchange and discussions of GL climate projections, integrated modeling, and downscaling approaches for resource managers.

Deliverables:

- Convene an expert climate modelling workshop
- Update *Climate Change in The Great Lakes Basin report*
- Host Annex 9 *Climate Change Webinar Series* and *Extended Subcommittee Calls*

2. Produce and share relevant climate information with the Great Lakes community, (including regularly issuing the binational Quarterly Climate Impacts and Outlook report and the Annual Climate Trends and Impacts Summary for the Great Lakes Basin.

Deliverables:

- Publish *Quarterly Climate Impacts and Outlook* reports
- Publish Annual Climate Trends and Impacts reports

(127 cm) of snow in localized areas downwind of Lakes Erie and Ontario. Snowfall in southern Ontario A massive lake-effect snow event from December 23-27 ranged from about 20-40 inches (50-100 cm) dumped 51.9 inches (131.8 cm Only a few deep cold periods affected the Great Lakes, and long warm stretches were widespread

This resulted in persistently low lake ice extent, much above-normal water temperatures, and below-normal snowfall

Winter weather advisories spanned the region on February 22 as a strong storm brought rain, ice, and snow. The Green Bay area had about 6-10 inches (15-25 cm) of snowfall while the Detroit area had over a half-inch (13 mm) of ice.

A lack of snow and warm temperatures contributed to drought intensification in southeast Michigan and southern Ontario across the winter months

Regional Climate Overview – December 2022 - February 2023

Air Temperature and

Current Water Levels End of Feb 2023 evel Compared to

Winter Temperature

Winter Precipitation

Precipitation normals based on 1991-2020

(U.S) and 1981-2010 (Canada)

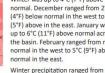
cumulations of a tenth-inch (2.

m) to a half-inch (13 mm) from

Grand Rapids to Detroit.

Precipitation Winter was up to 4°C (7°F) above normal. December ranged from 2°C (4°F) below normal in the west to 3°C (5°F) above in the east. January was up to 6°C (11°F) above normal across the basin. February ranged from near normal in the west to 5°C (9°F) above

75-200% of normal across the basin December precipitation was over 150% of normal in the far western and eastern ends of the basin, with 50-150% in between. January ranged from



the basin to over 150% of normal in the vestern lakes Michigan had its 6th warmest winter. In Ohio, Cleveland had its 2nd warmest winter and Toledo had its 8th least iemperature normals based on 1991-2020 snowy. Watertown, New York has its

2nd wettest winte

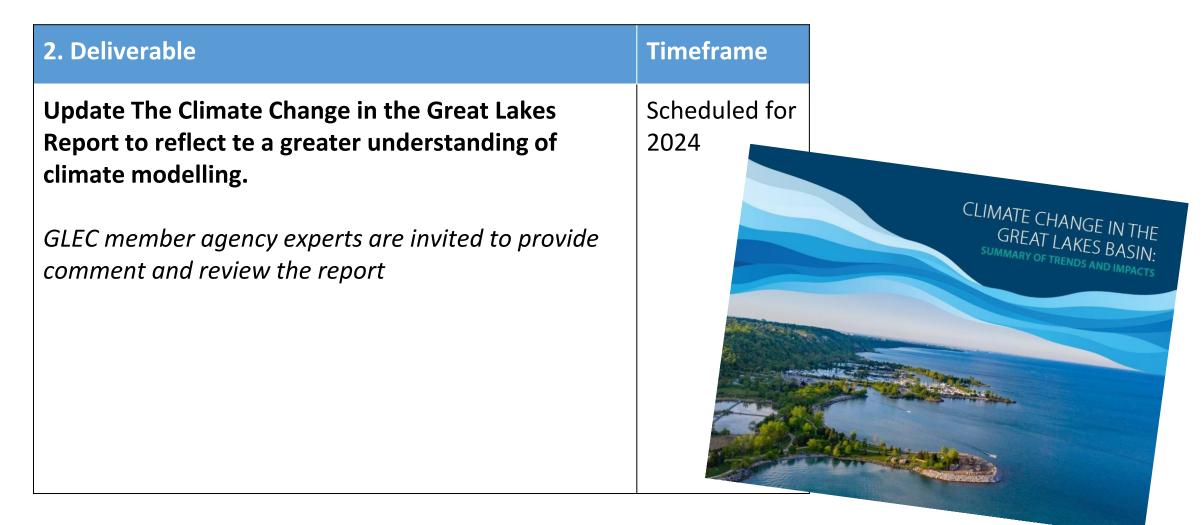
experienced a net decrease in wate levels from the beginning of December to the end of February, which is typical for this time period. In contrast, lakes Erie and Ontario experienced well above average rises in water level over the same time horizon due to warm and wet conditions throughout January and February.

Great Lakes Region Quarterly Climate Impacts and Outlook | March 20 https://www.drought.gov/drought/resources/rep

for Feb Frie +42 cm +26 cm Ont. +19 cm -11 cm +39 cm

End of February water levels were above average on all lakes, while Lake Superior was the only lake above its level from last February 50-125% of normal in the west up to Lakes Superior and Michigan-Huron 200% in the east. February ranged from 75% of normal in the eastern end of

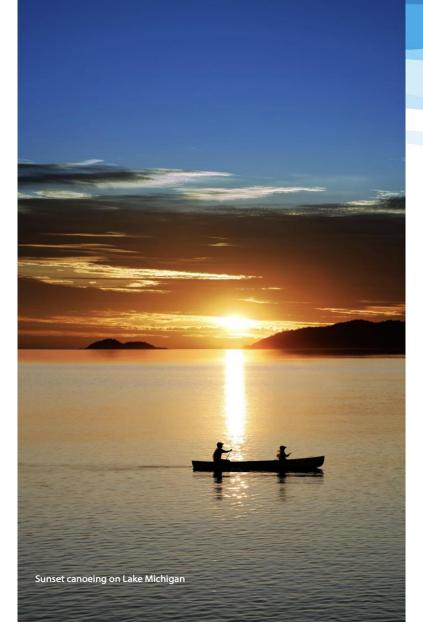
Foster and enhance knowledge exchange and discussions on Great Lakes climate projections, integrated modeling, and downscaling approaches for Great Lakes resource managers.



Deliverable	Timeframe
Planning for the next climate modelling workshop is in progres. We expect registration to open in February with plans for the workshop to convene in spring.	Scheduled for 2023 - 24
GLEC member agency and organization modelers are invited to attend and present	

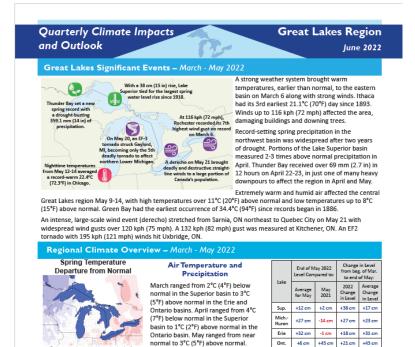
2021 Recap: 66 participants

Themes: 1)Physical climate modeling 2) Bias & bias correction 3) Lake level impact modeling 4) Translating climate information **Activities:** 1) Review existing climate modeling efforts, share work, identify gaps, develop recommendations


Foster and enhance knowledge exchange and discussions on Great Lakes climate projections, integrated modeling, and downscaling approaches for Great Lakes resource managers.

Implementation of the Priority Action #1: Climate Change in the Great Lakes Report

The Climate Change in the Great Lakes Report presents many opportunities to address climate change impacts across the various Annex themes.


Table of Contents	
EXECUTIVE SUMMARY	4
1.0 INTRODUCTION	6
2.0 HISTORICAL AND FUTURE CLIMATE TRENDS	10
2.1 Over-Land Air Temperature (ECCC Projections)	11
2.2 Over-Lake Precipitation (ECCC Projections)	17
2.3 Lake Levels (ECCC Projections)	22
2.4 Ice Cover (CCR Projections)	33
3.0 CLIMATE CHANGE IMPACTS	39
3.1 Impacts of Warmer Water Temperatures	39
3.2 Impacts of Ice Cover Reduction	41
3.3 Impacts of Flooding, Erosion, and Storms	42
3.4 Impacts on Industries and Livelihoods	44
3.5 Impacts on Ecosystems and Biodiversity	45
4.0 LOOKING AHEAD	46
REFERENCES	48
APPENDIX A: Detailed Description of the Methodology Used by Environment and Climate Change Canada to Develop the Climate and Water Level Projections	53
APPENDIX B : Detailed Description of the Methodology Used by the Nelson Institute Center for Climatic Research to Develop the Ice Cover Projections	56

Foster and enhance knowledge exchange and discussions on Great Lakes climate projections, integrated modeling, and downscaling approaches for Great Lakes resource managers.

Deliverable	Timeframe
Annex 9 Climate Change Webinar Series and Extended Subcommittee meetings help share climate change related information	Occur approximately every quarter
GLEC member agencies and organizations are invited to attend, participate and learn from invited climate change experts, as well as present their own climate-related work	

Produce and share climate information of relevance to the Agreement with the Great Lakes community, including regularly issuing the binational Quarterly Climate Impacts and Outlook report and the Annual Climate Trends and Impacts Summary for the Great Lakes Basin.

1 -0.5 0.5 1 Spring Precipitation

Percent of Norma

During M Ontario bi while the with the o average ir Δnril Π rier exce basins see overall ba

Precipitation normals based on 1991-2020. spring, wit Temperature normals based on 1991-2020 and the of (U.S) and 1981-2010 (Canada). widhalm@purdue.edu'

normal to 3°C (5°F) above normal.	Ont.	+8 cm	+45 cm	+21 cm	+43 cm
Spring ranged from 2°C (4°F) below normal in the Superior basin to 2°C (4°F) above normal in the Erie and Ontario basins.	End of averag	Current May wa e on all I or and O	ter leve akes, ar	ls were a Id Lakes	above-
During March and April, the Erie and Ontario basins were drier than average while the other basins were wetter, with the overall basin seeing 118% of average in March and 122% of average in April. During May, all basins were drier except Superior, with the overall basins seeing 96% of average. The overall basin saw 111% of average for spring, with Their and Ontario being drier and the other basins being wetter.	Superior and Ontario were above last May's levels. Lake Superior had wet spring conditions that led to a large rise in water level. The lake measuree a 38 centimeter increase from the beginning of March to the end of May, which tied for the largest rise on record (1918-2021) during that time frame. Lake Michigan-Huron had a slightly above-average spring rise, while water levels on Lakes Erie and Ontario had a below-average spring				large easured the of rise that ron had grise, e and
TON	rise.				

Freat Lakes Reaion Quarterly Climate Impacts and Outlook | June 202 https://www.drought.gov/drought/resources/repo

Deliverable	Timeframe
Quarterly Climate Impacts and Outlook reports	Released quarterly in March, June,
Continue to rely on several GLEC member agencies' participation in the compilation and development of these reports	September and December
Annual Climate Trends and Impacts Summary reports	Released annually in late spring
Continue to rely on several GLEC member agencies' participation in the compilation and development of these reports	

onex 9 of the C,

Join the Annex 9 Subcommittee

Climate Change Updates

Get updated on climate change news, research, and events happening in the Great Lakes Basin

Connect

Learn from and network with over 90 practitioners in the Great Lakes in both Canada and the U.S.

Strategic Sharing

Participate in our quarterly calls where you can provide input on various research projects and share key insights and findings from your own research or events

Email: <u>Alisa.Young@noaa.gov</u> or <u>Sean.Backus@ec.gc.ca</u>

Annex 9 Webinar Series

CANADA'S NATIONAL ADAPTATION STRATEGY

Briefing on Canada's first National Adaptation Strategy and how it is relevant to the Great Lakes

Friday, November 17, 2023

Vincent Loiselle Senior Policy Analyst, Climate Change Adaptation Policy, ECCC

Questions?

Sean Backus, Environment and Climate Change Canada Sean.Backus@ec.gc.ca

Alisa Young, U.S. National Oceanic and Atmospheric Administration <u>Alisa.Young@noaa.gov</u>